Homework Help for English

5,590 results

The language of England, widely used around the world as a language for business and communications.

For unlimited access to Homework Help, a Homework+ subscription is required.

Avatar image
tealcrow431 asked for the first time
Avatar image
harlequindeer863 asked for the first time
Avatar image
harlequinpug256 asked for the first time
Avatar image
purplemouse53 asked for the first time
Avatar image
aquamarinesnake727 asked for the first time
Avatar image
beigeherring990 asked for the first time
in English·
2 Mar 2021

SCIENTISTS CONTINUE TO find new ways to insert genes for specific traits into plant and animal DNA. A field of promise—and a subject of debate—genetic engineering is changing the food we eat and the world we live in.

 

    In the brave new world of genetic engineering, Dean DellaPenna envisions this cornucopia: tomatoes and broccoli bursting with cancer-fighting chemicals and vitamin-enhanced crops of rice, sweet potatoes, and cassava to help nourish the poor. He sees wheat, soy, and peanuts free of allergens; bananas that deliver vaccines; and vegetable oils so loaded with therapeutic ingredients that doctors "prescribe" them for patients at risk for cancer and heart disease. A plant biochemist at Michigan State University, DellaPenna believes that genetically engineered foods are the key to the next wave of advances in agriculture and health.

While DellaPenna and many others see great potential in the products of this new biotechnology, some see uncertainty, even danger. Critics fear that genetically engineered products are being rushed to market before their effects are fully

understood. Anxiety has been fueled by reports of taco shells contaminated with genetically engineered corn not approved for human consumption; the potential spread of noxious "superweeds" spawned by genes picked up from engineered crops; and possible harmful effects of biotech corn pollen on monarch butterflies.

In North America and Europe the value and impact of genetically engineered food crops have become subjects of intense debate, provoking reactions from unbridled optimism to fervent political opposition.

Just what are genetically engineered foods, and who is eating them? What do we know about their benefits—and their risks? What effect might engineered plants have on the environment and on permanent agricultural practices around the world? Can they help feed and preserve the health of the Earth's burgeoning population?

Q: Who's eating biotech foods? A: In all likelihood, you are.

Most people in the United States don't realize that they've been eating genetically engineered foods since the mid-1990s. More than 60 percent of all conversions on U.S. supermarket shelves—including pizza, chips, cookies, ice cream, salad dressing, corn syrup, and baking powder—contain ingredients from engineered soybeans, corn, or

canola.

In the past decade or so, the biotech plants that go into these processed foods have leaped from hothouse oddities to crops planted on a massive scale—on 130 million acres (52.6 million hectares) in 13 countries, among them Argentina, Canada, China, South Africa, Australia, Germany, and Spain. On U.S. farmland, acreage planted with genetically engineered crops jumped approximately 25-fold from 3.6 million acres (1.5 million hectares) in 1996 to 88.2 million acres (35.7 million hectares) in 2001. More than 50 different "designer" crops have passed through a federal review process, and about a hundred more are undergoing field trials.

 

    Q: How long have we been genetically altering our food? A: Longer than you think.

Genetic modification is not novel. Humans have been altering the genetic makeup of plants for millennia, keeping seeds from the best crops and planting them in following years, breeding and crossbreeding varieties to make them taste sweeter, grow bigger, last longer. In this way we've transformed the wild tomato, Lycopersicon, from a fruit the size of a marble to today's giant, juicy beefsteaks. From a weedy plant called teosinte with an "ear" barely an inch long has come our foot-long (0.3-meter-long) ears of sweet white and yellow corn. In just the past few decades plant breeders have used traditional techniques to produce varieties of wheat and rice plants with higher grain yields. They have also created hundreds of new crop variants using irradiation and

mutagenic chemicals.

But the technique of genetic engineering is new, and quite different from conventional breeding. Traditional breeders cross related organisms whose genetic makeups are similar. In so doing, they transfer tens of thousands of genes. By contrast, today's genetic engineers can transfer just a few genes at a time between species that are distantly related or not related at all.

Genetic engineers can pull a desired gene from virtually any living organism and insert it into virtually any other organism. They can put a rat gene into lettuce to make a plant that produces vitamin C or splice genes from the cecropia moth into apple plants, offering protection from fire blight, a bacterial disease that damages apples and pears. The purpose is the same: to insert a gene or genes from a donor organism carrying a desired trait into an organism that does not have the trait.

The engineered organisms scientists produce by transferring genes between species are called transgenic. Several dozen transgenic food crops are currently on the market, among them varieties of corn, squash, canola, soybeans, and cotton, from which cottonseed oil is produced. Most of these crops are engineered to help farmers deal with age-old agriculture problems: weeds, insects, and disease.

Farmers spray herbicides to kill weeds. Biotech crops can carry special "tolerance" genes that help them withstand the spraying of chemicals that kill nearly every other

kind of plant. Some biotech varieties make their own insecticide, thanks to a gene borrowed from a common soil bacterium, Bacillus thuringiensis, or BT for short.

BT genes code for toxins considered to be harmless to humans but lethal to certain insects, including the European corn borer, an insect that tunnels into cornstalks and ears, making it a bane of corn farmers. So effective is BT that organic farmers have used it as a natural insecticide for decades, albeit sparingly. Corn borer caterpillars’ bite

 

    into the leaves, stems, or kernels of a BT corn plant, the toxin attacks their digestive tracts, and they die within a few days.

Other food plants—squash and papaya, for instance—have been genetically engineered to resist diseases. Lately scientists have been experimenting with potatoes, modifying them with genes of bees and moths to protect the crops from potato blight fungus, and grapevines with silkworm genes to make the vines resistant to Pierce's disease, spread by insects.

With the new tools of genetic engineering, scientists have also created transgenic animals. Atlantic salmon grow more slowly during the winter, but engineered salmon,

"souped-up" with modified growth-hormone genes from other fish, reach market size in about half the normal time. Scientists are also using biotechnology to insert genes into cows and sheep so that the animals will produce pharmaceuticals in their milk. None of these transgenic animals have yet entered the market.

Q: Are biotech foods safe for humans? A: Yes, as far as we know.

"Risks exist everywhere in our food supply," points out Dean DellaPenna. "About a hundred people die each year from peanut allergies. With genetically engineered foods we minimize risks by doing rigorous testing."

According to Eric Sachs, a spokesperson for Monsanto, a leading developer of biotech products: "Transgenic products go through more testing than any of the other foods we eat. We screen for potential toxins and allergens. We monitor the levels of nutrients, proteins, and other components to see that the transgenic plants are substantially equivalent to traditional plants."

Three federal agencies regulate genetically engineered crops and foods—the U.S. Department of Agriculture (USDA), the Environmental Protection Agency (EPA), and the Food and Drug Administration (FDA). The FDA reviews data on allergens, toxicity, and nutrient levels voluntarily submitted by companies. If that information shows that the new foods are not substantially equivalent to conventional ones, the foods must

undergo further testing. Last year the agency proposed tightening its scrutiny of engineered foods, making the safety assessments mandatory rather than voluntary.

"When it comes to addressing concerns about health issues, industry is being held to very high standards" says DellaPenna, "and it's doing its best to meet them in reasonable and rigorous fashion."

 

    In the mid-1990s a biotech company launched a project to insert a gene from the Brazil nut into a soybean. The Brazil nut gene selected makes a protein rich in one essential amino acid. The aim was to create a more nutritious soybean for use in animal feed. Because the Brazil nut is known to contain an allergen, the company also tested the product for human reaction, with the thought that the transgenic soybean might accidentally enter the human food supply. When tests showed that humans would react to the modified soybeans, the project was abandoned.

For some people this was good evidence that the system of testing genetically engineered foods works. But for some scientists and consumer groups, it raised the specter of allergens or other hazards that might slip through the safety net. Scientists know that some proteins, such as the one in the Brazil nut, can cause allergic reactions

in humans, and they know how to test for these allergenic proteins. But the possibility exists that a novel protein with allergenic properties might turn up in an engineered food—just as it might in a new food produced by conventional means—and go undetected. Furthermore, critics say, the technique of moving genes across dramatically different species increases the likelihood of something going awry—either in the function of the inserted gene or in the function of the host DNA—raising the possibility of unanticipated health effects. An allergy scare in 2000 centered around StarLink, a variety of genetically engineered corn approved by the U.S. government only for animal use because it showed some suspicious qualities, among them a tendency to break down slowly during digestion, a known characteristic of allergens. When StarLink found its way into taco shells, corn chips, and other foods, massive and costly recalls were launched to try to remove the corn from the food supply.

No cases of allergic response have been pinned to StarLink. In fact, according to Steve L. Taylor, chair of the Department of Food Science and Technology at the University of Nebraska, "None of the current biotech products have been implicated in allergic reactions or any other healthcare problem in people." Nevertheless, all new foods may present new risks. Only rigorous testing can minimize those risks.

 

Answer the following

 

Description of GMF

   Impact of GMF

   Useful Purposes of GMF

  Benefits of GMF

 

  Identify three Main Ideas

   Identify three Inferred sentences

Avatar image
ivoryhedgehog421 asked for the first time

Start filling in the gaps now
Log in