1
answer
0
watching
208
views
8 Apr 2018

Please answer the question after reading the paragraph.

We have a global health challenge in our hands today, and that is that the way we currently discover and develop new drugs is too costly, takes far too long, and it fails more often than it succeeds. It really just isn't working, and that means that patients that badly need new therapies are not getting them, and diseases are going untreated. We seem to be spending more and more money. So for every billion dollars we spend in R&D, we're getting less drugs approved into the market. More money, less drugs. Now we have a whole pipeline of different organ chips that we are currently working on in our labs. Now, the true power of this technology, however, really comes from the fact that we can fluidically link them. There's fluid flowing across these cells, so we can begin to interconnect multiple different chips together to form what we call a virtual human on a chip. Now we're really getting excited.We're not going to ever recreate a whole human in these chips, but what our goal is is to be able to recreate sufficient functionality so that we can make better predictions of what's going to happen in humans. For example, now we can begin to explore what happens when we put a drug like an aerosol drug. Those of you like me who have asthma, when you take your inhaler, we can explore how that drug comes into your lungs, how it enters the body, how it might affect, say, your heart. Does it change the beating of your heart? Does it have a toxicity? Does it get cleared by the liver? Is it metabolized in the liver? Is it excreted in your kidneys? We can begin to study the dynamic response of the body to a drug. Organs on chips could also change the way we do clinical trials in the future. Right now, the average participant in a clinical trial is that: average. Tends to be middle aged, tends to be female. You won't find many clinical trials in which children are involved, yet every day, we give children medications, and the only safety data we have on that drug is one that we obtained from adults. Children are not adults. They may not respond in the same way adults do. There are other things like genetic differences in populations that may lead to at-risk populations that are at risk of having an adverse drug reaction. Now imagine if we could take cells from all those different populations, put them on chips, and create populations on a chip. This could really change the way we do clinical trials. And this is the team and the people that are doing this. We have engineers, we have cell biologists, we have clinicians, all working together. We're really seeing something quite incredible at the Wyss Institute. It's really a convergence of disciplines, where biology is influencing the way we design, the way we engineer, the way we build. It's pretty exciting.

Question: For years, technology and medicine have joined together to pave the way or even solve some of the world’s greatest issues in healthcare. These issues include but are not limited to incurable diseases and disorders like AIDS and cancer. According to Geraldine Hamilton however, we as a population are spending too much money to develop drugs and solutions to these issues, only to be at a deficit with the drugs actually produced. She believes that one of the keys is how we test these drugs and finding more efficient ways to do so. As a result, she suggests the use of organs on chips, an innovation created and pioneered by her lab. The use of organs on chips could change the way new drugs are released and tested, thus possibly furthering the process of creating solutions to healthcare’s problems. Where is the fine line between technology and human innovation? Is human innovation gradually becoming depending on technology? (At least two paragraphs, a paragraph is at least 5 sentences long.)

For unlimited access to Homework Help, a Homework+ subscription is required.

Hubert Koch
Hubert KochLv2
11 Apr 2018

Unlock all answers

Get 1 free homework help answer.
Already have an account? Log in

Related textbook solutions

Related questions

Related Documents

Weekly leaderboard

Start filling in the gaps now
Log in