NSCI 1322 Lecture Notes - Lecture 20: Hydrocarbon, Alkane, Trigonal Planar Molecular Geometry

23 views7 pages

Document Summary

Because carbon is in group 4a of the periodic table, it has four valence electrons. To fill its octet, it requires four additional electrons, which can be obtained through the formation of four covalent bonds. Carbon forms single, double, and triple bonds to achieve a filled octet. Therefore, the possible bonding combinations for carbon are as follows. Recall from the vsepr model that the molecular geometry around an atom is dictated by the number of regions of electron density. As we have seen, double and triple bonds count as one area of electron density; therefore, carbon can have a tetrahedral, trigonal planar, or linear geometry. A unique feature of carbon is its ability to bond with other carbon atoms to form chains and rings of various lengths. Several other elements have limited ability to form such chains or rings of like atoms, but only carbon does this with more than a few atoms.

Get access

Grade+20% off
$8 USD/m$10 USD/m
Billed $96 USD annually
Grade+
Homework Help
Study Guides
Textbook Solutions
Class Notes
Textbook Notes
Booster Class
40 Verified Answers
Class+
$8 USD/m
Billed $96 USD annually
Class+
Homework Help
Study Guides
Textbook Solutions
Class Notes
Textbook Notes
Booster Class
30 Verified Answers

Related Documents