1
answer
0
watching
574
views

Mercury in the environment can exist in oxidation states 0, +1,
and +2. One major question in environmental chemistry research is how to best measure the oxidation state of mercury in natural systems; this is made more complicated by the fact that mercury can be reduced or oxidized on surfaces differently than it would be if it were free in solution. XPS, X-ray photoelectron spectroscopy, is a technique related to PES (see Exercise 7.111), but instead of using ultraviolet light to eject valence electrons, X rays are used to eject core electrons. The energies of the core electrons are different for different oxidation states of the element. In one set of experiments, researchers examined mercury contamination of minerals in water. They measured the XPS signals that corresponded to electrons ejected from mercury’s 4f orbitals at 105 eV, from an X-ray source that provided 1253.6 eV of energy. The oxygen on the mineral surface gave emitted electron energies at 531 eV, corresponding to the 1s orbital of oxygen. Overall the researchers concluded that oxidation states were +2 for Hg and –2 for O. (a) Calculate the wavelength of the X rays used in this experiment. (b) Compare the energies of the 4f electrons in mercury and the 1s electrons in oxygen from these data to the first ionization energies of mercury and oxygen from the data in this chapter. (c) Write out the ground-state electron configurations for Hg2+ and O2-; which electrons are the valence electrons in each case? (d) Use Slater’s rules to estimate Zeff for the 4f and valence electrons of Hg2+ and O2-; assume for this purpose that all the inner electrons with (n – 3) or less screen a full +1.

For unlimited access to Homework Help, a Homework+ subscription is required.

Jamar Ferry
Jamar FerryLv2
20 May 2020

Unlock all answers

Get 1 free homework help answer.
Already have an account? Log in
Start filling in the gaps now
Log in