5. Each customer who enters a certain business must be served first by server 1 , then by server 2 , and finally by server 3 . The amount of time it takes to be served by server i is an exponential random variable with rate $\mu_{i}(i=1,2,3)$. Suppose you enter the system at a time when it contains a single customer who is being served by server 3 .
(2 marks) (a) What is the probability that server 3 will still be busy when you move over to server 2?
(2 marks) (b) What is the probability that server 3 will still be busy when you move over to server 3?
(6 marks) (c) Suppose that $\mu_{1}=\mu_{3}=1$ and $\mu_{2}=2$. Find the expected time that you spend in the system.

5(a) $\frac{\mu_{1}}{\mu_{1}+\mu_{3}}$.

$$
5(b) P\left(x_{1}+x_{2}<x_{3}\right)=\frac{\mu_{1}+\mu_{2}}{\mu_{1}+\mu_{2}+\mu_{3}}
$$

$5(c) \mathbb{E}[T]=S_{1}+S_{2}+S_{3}+W_{3}$
method 1

$$
\begin{aligned}
& =\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}+\frac{1}{\mu_{3}}+\frac{\mu_{1}+\mu_{2}}{\mu_{1}+\mu_{2}+\mu_{3}} \cdot \frac{1}{\mu_{3}} \\
& =\frac{1}{1}+\frac{1}{2} ף+\frac{3}{4} \cdot \frac{1}{1} \\
& =2+\frac{1}{2}+\frac{3}{4} \\
& =2+\frac{2+3}{4}=2+\frac{5}{4}=\frac{8+5}{4}=\frac{13}{4}
\end{aligned}
$$

method 2:

$$
\begin{aligned}
& \mathbb{E}[T]=T_{1}+R_{1} \\
& =\frac{1}{\mu_{1}+\mu_{3}}+R_{1} \\
& R_{1}=\frac{\mu_{1}}{\mu_{1}+\mu_{3}} T_{2}+\frac{\mu_{3}}{\mu_{1}+\mu_{3}}\left(\frac{1}{\mu_{2}}+\frac{1}{\mu_{3}}+\frac{1}{\mu_{1}}\right) \\
& T_{2}=\frac{1}{\mu_{2}+\mu_{3}}+R_{2}=\frac{1}{3}+\frac{11}{6}=\frac{2+11}{6}=\frac{13}{6} \\
& R_{2}=\frac{\mu_{2}}{\mu_{2}+\mu_{3}}\left(\frac{2}{\mu_{3}}\right)+\frac{\mu_{3}}{\mu_{2}+\mu_{3}}\left(\frac{1}{\mu_{2}}+\frac{1}{\mu_{3}}\right)=\frac{2}{3}(2)+\frac{1}{3}\left(\frac{1}{2}+1\right) \\
& =\frac{4}{3}+\frac{1}{x}\left(\frac{x}{2}\right)=\frac{4}{3}+\frac{1}{2} \\
& =\frac{8+3}{6}=\frac{11}{6} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
R_{1} & =\frac{1}{2}\left(\frac{13}{6}\right)+\frac{1}{2}\left(2+\frac{1}{2}\right) \\
& =\frac{1}{2} \cdot \frac{13}{6}+\frac{1}{2}\left(\frac{5}{2}\right) \\
& =\frac{13}{12}+\frac{5}{4} \\
& =\frac{13+5 \times 3}{12}=\frac{13+15}{12}=\frac{28}{12}=\frac{4 \times 7}{4 \times 3}=\frac{7}{3} \\
\mathbb{U}[T] & =\frac{1}{2}+\frac{7}{3}=\frac{3+14}{6}=\frac{17}{6}
\end{aligned}
$$

