Coordinates of foci:
$\left(\pm \sqrt{a^{2}+b^{2}}, 0\right)$
Slope of m_{1} of line $P F_{1}$:

$$
m_{1}=\frac{y_{0}}{x_{0}+\sqrt{a^{2}+b^{2}}}
$$

Slope of m_{2} of line $P F_{2}$:

$$
m_{2}=\frac{y_{0}}{x_{0}-\sqrt{a^{2}+b^{2}}}
$$

So, the tangent line is:

$$
y=m\left(x-x_{0}\right)+y_{0}
$$

By substituting for y in the equation of the hyperbola you get:

$$
\frac{x^{2}}{a^{2}}-\frac{\left(m\left(x-x_{0}\right)+y_{0}\right)^{2}}{b^{2}}=1
$$

You know have a quadratic in x which you can work to arrange in standard form:

$$
\begin{aligned}
& b^{2} x^{2}-a^{2}\left(m\left(x-x_{0}\right)+y_{0}\right)^{2}=a^{2} b^{2} \\
& b^{2} x^{2}-a^{2}\left(m^{2}\left(x-x_{0}\right)^{2}+2 m y_{0}\left(x-x_{0}\right)+y_{0}^{2}\right)=a^{2} b^{2} \\
& b^{2} x^{2}-a^{2}\left(m^{2}\left(x^{2}-2 x_{0} x+x_{0}^{2}\right)+2 m y_{0}\left(x-x_{0}\right)+y_{0}^{2}\right)=a^{2} b^{2} \\
& b^{2} x^{2}-a^{2}\left(m^{2} x^{2}-2 m^{2} x_{0} x+m^{2} x_{0}^{2}+2 m y_{0} x-2 m y_{0} x_{0}+y_{0}^{2}\right)=a^{2} b^{2} \\
& b^{2} x^{2}-a^{2} m^{2} x^{2}+2 a^{2} m^{2} x_{0} x-a^{2} m^{2} x_{0}^{2}-2 a^{2} m y_{0} x+2 a^{2} m y_{0} x_{0}-a^{2} y_{0}^{2}=a^{2} b^{2} \\
& \left(b^{2}-a^{2} m^{2}\right) x^{2}+2 a^{2} m\left(m x_{0}-y_{0}\right) x-a^{2}\left(\left(m x_{0}-y_{0}\right)^{2}+b^{2}\right)=0
\end{aligned}
$$

Now, having arranged the quadratic in standard form, we can equate the discriminant to zero, to find the value of mm , since the tangent line does not touch the hyperbola anywhere else:

$$
\left(2 a^{2} m\left(m x_{0}-y_{0}\right)\right)^{2}-4\left(b^{2}-a^{2} m^{2}\right)\left(-a^{2}\left(\left(m x_{0}-y_{0}\right)^{2}+b^{2}\right)\right)=0
$$

Which reduces to:

$$
\left(a^{2}-x_{0}^{2}\right) m^{2}+2 x_{0} y_{0} m-\left(b^{2}+y_{0}^{2}\right)=0
$$

Applying the quadratic formula, you get:

$$
\begin{gathered}
m=\frac{-2 x_{0} y_{0} \pm \sqrt{\left(2 x_{0} y_{0}\right)^{2}+4\left(a^{2}-x_{0}^{2}\right)\left(b^{2}+y_{0}^{2}\right)}}{2\left(a^{2}-x_{0}^{2}\right)} \\
m=\frac{-x_{0} y_{0} \pm \sqrt{a^{2} b^{2}+a^{2} y_{0}^{2}-b^{2} x_{0}^{2}}}{a^{2}-x_{n}^{2}}
\end{gathered}
$$

Now, since the point $\left(x_{0}, y_{0}\right)$ is on the hyperbola, we know:

$$
\frac{x_{0}^{2}}{a^{2}}-\frac{y_{0}^{2}}{b^{2}}=1
$$

And this is arranged as:

$$
a^{2} b^{2}+a^{2} y_{0}^{2}-b^{2} x_{0}^{2}=0
$$

And:

$$
a^{2} b^{2}+a^{2} y_{0}^{2}-b^{2} x_{0}^{2}=0
$$

Using:

$$
a^{2} b^{2}+a^{2} y_{0}^{2}-b^{2} x_{0}^{2}=0
$$

We find:

$$
x_{0}^{2}-a^{2}=\frac{a^{2} y_{0}^{2}}{b^{2}}
$$

And so:

$$
m=\frac{x_{0} y_{0}}{\frac{a^{2} y_{0}^{2}}{b^{2}}}=\frac{b^{2} x_{0}}{a^{2} y_{0}}
$$

Now for calculus:

Implicitly differentiating the hyperbola with respect to x, we find:
$\frac{2 x}{a^{2}}-\frac{2 y}{b^{2}} y^{\prime}=0 \Longrightarrow y^{\prime}=\frac{b^{2} x}{a^{2} y}$

And so, at point $\left(x_{0}, y_{0}\right)$, we get:

$$
y^{\prime}=\frac{b^{2} x_{0}}{a^{2} y_{0}}
$$

So now considering this diagram:

We know:

$$
\begin{aligned}
& \arctan \left(m_{1}\right)+(\pi-\arctan (m))+\alpha=\pi \Longrightarrow \alpha=\arctan (m)-\arctan \left(m_{1}\right) \\
& \arctan (m)+\left(\pi-\arctan \left(m_{2}\right)\right)+\beta=\pi \Longrightarrow \beta=\arctan \left(m_{2}\right)-\arctan (m)
\end{aligned}
$$

Now considering:
$\arctan (a)-\arctan (b)=\arctan \left(\frac{a-b}{1+a b}\right)$

And:

$$
\begin{aligned}
& \alpha=\arctan \left(\frac{m-m_{1}}{1+m m_{1}}\right)=\arctan \left(\frac{\frac{b^{2} x_{0}}{a^{2} y_{0}}-\frac{y_{0}}{x_{0}+\sqrt{a^{2}+b^{2}}}}{1+\frac{b^{2} x_{0}}{a^{2} y_{0}} \cdot \frac{y_{0}}{x_{0}+\sqrt{a^{2}+b^{2}}}}\right) \\
& \beta=\arctan \left(\frac{m_{2}-m}{1+m m_{2}}\right)=\arctan \left(\frac{\frac{y_{0}}{x_{0}-\sqrt{a^{2}+b^{2}}}-\frac{b^{2} x_{0}}{a^{2} y_{0}}}{1+\frac{b^{2} x_{0}}{a^{2} y_{0}} \cdot \frac{y_{0}}{x_{0}-\sqrt{a^{2}+b^{2}}}}\right)
\end{aligned}
$$

And to simplify:

$$
\begin{array}{r}
\frac{\frac{b^{2} x_{0}}{a^{2} y_{0}}-\frac{y_{0}}{x_{0}+\sqrt{a^{2}+b^{2}}}}{1+\frac{b^{2} x_{0}}{a^{2} y_{0}} \cdot \frac{y_{0}}{x_{0}+\sqrt{a^{2}+b^{2}}}}=\frac{b^{2} x_{0}^{2}+b^{2} x_{0} \sqrt{a^{2}+b^{2}}-a^{2} y_{0}^{2}}{a^{2} x_{0} y_{0}+a^{2} y_{0} \sqrt{a^{2}+b^{2}}+b^{2} x_{0} y_{0}}=\frac{a^{2} b^{2}+b^{2} x_{0} \sqrt{a^{2}+b^{2}}}{\left(a^{2}+b^{2}\right) x_{0} y_{0}+a^{2} y_{0} \sqrt{a^{2}+b^{2}}}=\frac{b^{2}\left(a^{2}+x_{0} \sqrt{a^{2}+b^{2}}\right)}{y_{0} \sqrt{a^{2}+b^{2}}\left(\sqrt{a^{2}+b^{2}} x_{0}+a^{2}\right)} \\
=\frac{b^{2}}{y_{0} \sqrt{a^{2}+b^{2}}}
\end{array}
$$

Likewise:

$$
\frac{\frac{y_{0}}{x_{0}-\sqrt{a^{2}+b^{2}}}-\frac{b^{2} x_{0}}{a^{2} y_{0}}}{1+\frac{b^{2} x_{0}}{a^{2} y_{0}} \cdot \frac{y_{0}}{x_{0}-\sqrt{a^{2}+b^{2}}}}=\frac{b^{2}}{y_{0} \sqrt{a^{2}+b^{2}}}
$$

And so, we can conclude:

$$
\alpha=\beta
$$

