1. 
$$xu_x + u_y = x$$
  
 $u(0) = 0 = u_0(x_0(s), y_0(s)) = u_0(s, 0) = 0, \quad x > 0$ 

$$\Gamma = \{(s,0)|s>0\}$$

$$\frac{dx}{d\tau} = x, \qquad x(0) = x_0(s) = s$$

$$x = se^{\tau}$$

$$\frac{dy}{d\tau} = 1, y(0) = y_0(s) = 0$$
  
 
$$y = \tau$$

$$\begin{aligned} \frac{du}{d\tau} &= x, & u(0) &= u_0(s) = 0\\ \frac{\partial u}{\partial x} &\times \frac{dx}{d\tau} &= \frac{du}{dx} = x\\ 1 \ du &= x \ dx \end{aligned}$$

$$\frac{\partial u}{\partial x} \times \frac{dx}{d\tau} = \frac{du}{dx} = x$$

$$1 du = x dx$$

$$u = \frac{x^2}{2}$$

$$u(s,\tau) = \frac{(se^t)^2}{\frac{2}{2}}$$
$$u(x,y) = \frac{(xe^{-y}e^y)^2}{\frac{2}{2}} = u(x,u) = \frac{x^2}{\frac{2}{2}}$$

$$x = se^y$$

$$s = xe^{-y}$$

$$y = ln\left(\frac{x}{s}\right)$$

 $Slope = \frac{1}{3}$  characteristics



$$2. \quad xu_{xx} - 4yu_{xy} = 0$$

$$x_{0}(s) = c_{1}(s)$$

$$y_{0}(s) = c_{2}(s)$$

$$u(x_{0}(s), y_{0}(s)) = c_{3}(s)$$

$$\frac{dx}{d\tau} = x, x(0, s) = c_{1}(s)$$

$$\frac{dt}{d\tau} = -4y, y(0, s) = c_{2}(s)$$

$$\frac{du}{d\tau} = 0, u(0) = c_{3}(s)$$
3.  $u'' - u = f(x)$ 

$$u(0) = u(1)$$

$$u'(0) = u'(1)$$

1.

(a) Find the solution to the Cauchy problem, for x > 0,

$$xu_x + u_y = x$$

with u(x, 0) = 0, AND sketch the characteristics.

- (b) Check your solution is correct.
- (c) Find the form of the general solution. Check your answer.
- (d) If instead, u(x, ln x) = g(x). Show that the solution may not exist unless g satisfies has a certain form. Find the solution if g does have this form. Show the Fundamental Existence Theorem does not apply.
- (e) Show the solution in Part (d) is not unique. You may find the general solution in (c) useful.
- 2. Find the general solution to

$$xu_{xx} - 4yu_{xy} = 0.$$

3. Consider the boundary-value problem

$$u'' - u = f(x),$$
  
 $u(0) = u(1),$   
 $u'(0) = u'(1).$ 

(a) Construct a Green's function

Hint: To reduce the number of unknowns look for the Green's function in the form

$$G(x,x') = \left\{ \begin{array}{ll} c_1 e^{x'} + c_2 e^{-x'} & x' < x \\ c_3 e^{x'-1} + c_4 e^{-(x'-1)} & x' > x \end{array} \right.$$

Also, because this problem is self adjoint (the adjoint problem is the same as the original), you will find G(x, x') = G(x', x) whe you are done.

- (b) Find the solution u(x) in term of the Green's function. It will only involve an integral because the boundary conditions are homogeneous.
- (c) Check your answer using Leibniz's rule (Theorem 5.2 in the notes).